Food offerings and feasting in Bronze Age burial contexts from the Körös region, Hungary

Kayla Pio, University of Michigan, and Dr. John Marston, Boston University

Abstract

While the collection and analysis of paleoethnobotanical material is increasingly common in settlement excavations, it still remains rare in burial contexts. Botanical material from cemeteries can provide important insights into mortuary practices and associative beliefs about the afterlife for investigated populations. Charred food remains may indicate food offerings or feasting around the burial site, as well as social inequality or aspects of the deceased’s personal identity. In Bronze Age cemeteries at Békés 103, Hungary, the near-absence of paleoethnobotanical material suggests that the placement of food offerings on the pyre was not customary, though rites involving uncharred food offerings or funerary feasts away from the burial site may have occurred. Taphonomic processes could have affected the archaeobotanical assemblage. This study examines intra-site patterning to address this possibility as well as ritual variation within the cemetery. In addition, this study places Békés 103’s paleoethnobotanical material in comparison with similar assemblages from other Hungarian burial and prehistoric settlement contexts.

Background

Békés 103 lies in an agricultural plough-zone in Eastern Hungary. The site has been surveyed and excavated by BAKOTA (Bronze Age Körös Off-Tell Archaeology Project) since 2011. Soil phosphate analysis and surface collection suggest that the cemetery consists of two distinct burial clusters, each 100-150 meters across: Area B to the north of the site, and Area C to the south (Fig.1).

Survey suggests that Area A is an associated “flat” settlement with Sarmatian, Árpád, and Late Medieval cemeteries superimposing Bronze Age and Neolithic material. Excavation has focused on Area C and the southern part of Area B. 68 Bronze Age burials, predominately cremations, have been excavated, the largest portion dated between 1600 and 1200 CalBC (C14). While the basis of the cemetery’s arrangement remains unclear, it is possible that it reflects a temporal or cultural differentiation (Duffy et al. 2014).

Methodology

Sampling

Flotation samples were retrieved from all excavated contexts between 2011 and 2014, including urn pits, inhumation graves, pit and ditch fills, and paleosol levels in each excavation unit, as well as a few burial urns fills. Sample size was 10L when possible. Since urn pit borders were usually uncertain, excavators extracted soil samples adjacent to and directly beneath the urn. For non-features and pit fills, excavators collected soil from the middle (by depth) of the layer/fill at a single contiguous locus.

Flotation

The 2011/2013 samples were recovered by flotation from a SMAP-style system (Fig. 2). The light fraction, consisting of charcoal, seeds, and roots, was initially collected with a 0.4 mm sieve, but given these samples’ very low botanical return, the sieve’s mesh size was decreased to 0.25 mm in 2014. The heavy fraction (ceramic sherd, bone, etc.) was collected with window screen (1.0-2.0 mm) and given to another team member for analysis.

Results

2011/2013 seasons, 62 samples have been sorted (158 samples were floated out of 190 collected from the southern burial cluster (Area B). Samples from 2014 and 2015 are still awaiting analysis. Among these 104 samples, 30 features (representing 22 flotation samples, ca. 235 L of soil), 14 human burials, two of which were inhumations (37 samples, ca. 225 L), and three paleosol levels (3 samples, 30 L) were analyzed (Fig. 1).

Overall in the southern burial cluster (Area C)

- Very few prehistoric botanical remains are being recovered
- What is recovered is often fragmented and undeterminable

From the 12 urn pits

- Only one produced any identifiable charred seeds (two grasses)
- Two other urn pits had unidentifiable charred remains (Table 1).

Note: In 2015, two identifiable seeds (one Triticum aestivum sp./bread wheat) were recovered from an urn pit in the northern burial cluster (Area B) during excavation. The flotation sample is unanalysed.

Within the 2 urns

- No seeds found in the micro-excavated layers

Within the 3 vessels associated with cremations*

- Black grasshopper seeds (aegilops sp.?) in feature 11, 1/2 urn, 10 samples
- From the 2 inhumations pits

- No seeds were found.

From the 20 analyzed features

- A contained charred botanical remains (Table 1).
- The two ditches with charred seeds seem non-contemporary with the analyzed burials. Black nightshade, as found in feature 7, is a poisonous weed that may have been used as a crusted offering or as a condiment (Knevel 2011; Kepper 2012)
- Only one produced any identifiable charred seeds (one Triticum aestivum sp./bread wheat) were recovered from an urn pit in the northern burial cluster (Area B) during excavation. The flotation sample is unanalysed.

Discussion: Preservation

This low-density and highfragmentation of charred seeds may indicate an issue of preservation. In The Great Hungarian Plain, annual flooding is often cited as a leading cause on “flat” prehistoric sites (Kasper 2003, Bogdár 2011). While this may affect the assemblage overall, if preservation of charcoal can be used as a good indicator, there does not appear to be an observable distinction in preservation potential based on elevation (Fig. 2), or proximity to a waterway (Fig. 1).

Conclusions

Although the botanical remains are few, their variable presence within the urn pits must be explained. The most compelling argument is that they represent food offerings. The predominance of grasses in the cemetery’s botanical assemblage parallels ritual deposits of cereals in burials in Sweden (Early Bronze Age through the end of the 1st millennium CE) as well as in other prehistoric European cemeteries (Hansson 2002). In this context, cereals may have been deposited for their symbolic association with fertility and life, for sustenance in the afterlife, or to indicate a social identity associated with cooking.

Thus, the variability in the presence of charred seeds may reflect variability in ritual practice across time, space, or social identity. Taphonomic processes could be affecting the data, but differences in preservation within the site have not been observed. Both variable employment of this rite and low seed densities are found in the aforementioned Swedish sites (Hansson 2002: 48), as well as in EBA cemeteries in Szegetzenmiklós and Kiskundorozsa in Hungary (Gyulai 2011: 280, Gyulai 2010: 94) (Fig. 3).

The low count of grain products, may indicate that they were sprinkled in the grave (Gyulai 2011), that the food gift is not completely preserved (Hansson 2002-47), or that the ritual only necessitated a small (symbolic?) offering (Gyulai 2010: 94). They do not appear to be placed in accompanying vessels, however, in contrast to findings at Kiskundorozsa, where one grain was found in a cremation’s grave good, and at Szegetzenmiklós-Vizmől (Table 2). In addition, they do not appear within urns, so it does not seem that it was customary for food offerings to be placed on the pyre during the cremation process. Moreover, this rite has yet to be observed in inhumation burials.

Fig. 1: Map of Békés 103. Cemetery and urban clusters. Scale bar in centimeters.

References


Hansen, F. 2004. Late Bronze Age and Early Iron Age ceramics from the Middle Danube region: A formative period for the ceramic repertoire in the Hungarian Plain. PhD diss., University of Amsterdam.


Fig. 3: [Left] Map of referenced cemeteries (ranges) in Hungary including Békés 103 (red).

Fig. 2: Scatter plot relating charcoal density (x) and heavy seed density (y) to elevation above sea level. Figure 2 includes all samples from Feature 7; Blue and red marks indicate range of elevation at which heavy seed density was observed (0.4-0.8% and 0.2-0.5% respectively). Urons with charred botanical remains were found between 85-100 E and 85-2 M.


Table 2: Cremation contexts with evidence of fragmented cereal. Bold Barrow Cluster may not represent data from feature 7, as found in Feature 7.

Acknowledgments

This work was supported by National Science Foundation (grant 1443010). Thanks to J. Marston and S. Plo for the invitation to apply and to Drs. A. Szabó and T. Vásárhelyi for permission to use the site. This work was conducted with the guidance of Dr. V. Szabó. We would like to thank Maria O. Medeiros for her kind hospitality. Additional thanks to the Békés 103 project team for their help. This work is also supported by the National Science Foundation grant 1443010.